A Bicharacteristic Scheme for the Numerical Computation of Two-Dimensional Converging Shock Waves
نویسنده
چکیده
A 2d unsteady bicharacteristic scheme with shock fitting is presented and its characteristic step, shock point step and boundary step are described. The bicharacteristic scheme is compared with an UNO scheme and the Moretti scheme. Its capabilities are illustrated by computing a converging, deformed shock wave.
منابع مشابه
The numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting
Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...
متن کاملA case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملNumerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells
A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...
متن کاملOn converging shock waves of spherical and polyhedral form
The behaviour of converging spherical shock waves is considered using Whitham’s theory of geometrical shock dynamics. An analysis of converging shocks whose initial shape takes the form of regular polyhedra is presented. The analysis of this problem is motivated by the earlier work on converging cylindrical shocks discussed in Schwendeman & Whitham (1987). In that paper, exact solutions were re...
متن کاملTransonic and Supersonic Overtaking of a Projectile Preceding a Shock Wave
In this paper, two-dimensional and axisymmetric, time dependent transonic and supersonic flows over a projectile overtaking a moving shock wave are considered. The flow is simulated numerically by solving full time averaged Navier-Stokes equations. The equations are linearized by Newton approach. The roe’s flux splitting method, second order central difference scheme for the diffusion terms, an...
متن کامل